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A formal derivation of the direct simulation technique of solution to the Boltzmann 
equation for a mixture of polyatomic gases is presented. A phenomenological model for 
binary collisions in a gas mixture having continuous internal energy is then developed. 
The model is based on the relaxation concept applied to individual collisions and 
interpreted statistically in a manner suitable to Monte Carlo simulation of rarefied 
flows. The model has a high degree of flexibility and requires little more computing time 
per collision than the hard-sphere model of monatomic gas. Sample calculations of a 
rotationally relaxing gas are compared to loaded-sphere and rough-sphere results. 

1. INTRODUCTION 

Owing to the complexity of the Boltzmann collision integral for diatomic or 
polyatomic gases, only simple problems of nonequilibrium kinetic theory have 
been treated. The collisional processes are not well understood and only calcu- 
lations with appeal to classical mechanical models such as rough-spheres, loaded- 
spheres and various C-bodies, or special intermolecular potentials have been 
practicable. 

The need for more tractable analytical methods which may be applied to a 
variety of rarefied flows has lead to the development of model equations such as 
those proposed by Morse [l], Holway [2], and Brau [3]. Essentially these relaxation 
models are based on the local equilibrium concept for postcollision ensemble 
averages paired with an appropriate evaluation of collision frequencies. Such 
model equations may be viewed as extensions of the BGKW-approximation of 
monatomic gas by Bhatnagar, Gross, and Krook [4] and Welander [5]. Further 
refinements and generalizations include the anisotropic source term proposed 
by Holway [2], application to mixtures of monatomic gases by Hammel [6], 
mixtures of diatomic gases by Haas, Arpaci, and Springer [7], and diatomic 
gas-radiation interaction by Phillips, Arpaci, and Larsen [8] and Phillips and 
Arpaci [9]. 
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Unlike analytical methods the numerical methods based on Monte Carlo 
schemes (see, for example, Haviland [lo]; Bird [l 1, 121) for simulating individual 
collisions in principle demand no simplifications of the collision integral. Given an 
appropriate description of the kinematics, dynamics, and energetics of collisions, 
steady and unsteady rarefied flows may be simulated. In practice, however, the 
computational task becomes almost prohibitive, even for simple one-dimensional 
flow problems, say of diatomic gas. Rough-sphere and loaded-sphere calculations 
by Bird [12] and Melville [13], respectively, appear to be manageable for one- 
dimensional problems, although time consuming. On the other hand, use of the 
Parker potential [14] as discussed by Macpherson [15] requires elaborate compu- 
tations of particle trajectories, severely limiting the practical use of the approach. 

To meet the need for a more tractable, although approximate, numerical 
method for the calculation of rarefied flows the present study introduces a statistical 
model for individual binary collisions of a polyatomic gas mixture. The model is 
similar in form to the analytical relaxation models for ensemble averages. However, 
the relaxation concept is applied to individual collisions and interpreted statistically 
in a manner suitable to a Monte Carlo simulation scheme. Typically, the model 
formulation specifies the number of internal degrees of freedom, the collision 
probability and a postcollision probability, such as the angular distribution of 
relative velocity. In the simple case of monatomic gas, these details are sufficient for 
the simulation to become identical to a hard-sphere calculation provided the 
collision probability is made proportional to relative velocity and postcollision 
relative velocity is uniformly distributed over the full solid angle. 

For a preliminary study the model is applied to a rotationally relaxing one- 
component gas. Results for the case of adiabatic, isotropic relaxation are compared 
to the loaded-sphere calculations of Melville [13], and results for the one- 
dimensional flow associated with steady spherical expansion are compared to 
rough-sphere calculations by Bird [12]. For application of the model, in a modified 
version, to two-dimensional hypersonic leading edge flow of diatomic gas we refer 
to the already published work of Pullin, Harvey, and Bienkowski [16]. 

2. SIMULATION OF THE BOLTZMANN EQUATION 

Considering a gas mixture of polyatomic molecules possessing internal energy 
a rarefied flow is described mathematically by the solution to the Boltzmann 
equations (ignoring body forces), 

(2.1) 

subject to appropriate initial and boundary conditions. The number density of 
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species a is denoted by n,(x, t) and the distribution function& is defined so that 
&(u, El ; x, t) gives the probability that a molecule of species a with internal 
energy Et (where 1 stands for all quantum numbers of the internal states) has 
velocity and position at time t within the volume [u, u + du] and [x, x + dx]. 

To solve Eq. (2.1) physical space is first divided into a finite number of cells in 
which the particles, simulating molecules, are located according to the initial 
conditions. Velocity, internal energy, and position coordinates are stored in the 
computer for each particle. The number of real molecules represented by each 
particle is the same large number throughout the flow, n,,I/,/iVaO = QP’JN,~ , 
where Vj denotes cell volume and Naj number of particles of species a in cell j, 
and subscript o denotes a reference cell at some equilibrium state. 

Equation (2.1) is solved successively over a basic time increment dt by a finite 
difference scheme in which motion and collisions are decoupled yielding two partial 
differential equations. Collisional contributions are evaluated within each cell 
separately ignoring both the distribution in space within the cell and the presence 
of other cells. Conversely, during motion, collisions are ignored and particles are 
moved according to their instantaneous velocities. 

Then, for cell j, the change in&, due to collision is 

(2.2) 

subject to the initial conditionf,, =fal(tJj . The differential equation governing 
the motion is that of collisionless flow, 

having the solution 

ndx, to + ~Mdu, 4 ; x, 2, + 4 
= n,(x - u Lit, to)f& El ; x - u, At, t,,). (2.4) 

Replacing the right-hand side of Eq. (2.4) by the solution of Eq. (2.2) gives the 
final solution at time t, + At, which also serves as the initial condition to Eq. (2.2) 
for the subsequent time step. Solving in this way Eqs. (2.2) and (2.3) successively 
in time increments d t gives an approximate solution of an unsteady problem. 
The foregoing procedure is expected to lead to the exact solution of Eq. (2.1) as 
cell size and time increment decrease and particle number increases. No stability 
criterion for this procedure can be explicitly stated, however, due to the strong 
nonlinearity of Eq. (2.1). 

Whereas the solution to Eq. (2.3) is exact and is readily obtained the collision 
term needs elaboration. Following Morse [l], starting from the Wang Chang and 
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Uhlenbeck 1171 semiquantum mechanical formulation, Eq. (2.2) is rewritten for a 
mixture of C components (see Chapman and Cowling [18]) as the sum of the 
elastic and inelastic collision integrals. The contribution to class (a, Z) in cell j is 
then 

where g& denotes relative velocity, k a general symbol for all appropriate collision 
parameters, and by the usual assumption g&I = gAbI’, a prime signifying post- 
collision parameters. Elastic and inelastic contributions can be separated by 
introducing the collisional cross sections 

:%ab(k, gab) = [t&b - 1)/2,b1 hx.ab& gab), (2.6) 

%zab(k gab) = (l/z,,) hT.ab(k gab> 6.7 4 f (L 4, (2.7) 

where I ror,&(k, gab) denotes the total cross section and z,&, the inelastic collision 
number, the ratio of inelastic to total collision time. 

Equation (2.5) represents a sum over collisions so the integrand is proportional 
to the probability of a specific collision. To evaluate Eq. (2.5) by a Monte Carlo 
technique we compute collisions according to these probability densities. Dropping 
summations and integrals, we rewrite the integrand for elastic and inelastic 
collisions in terms of collision frequencies and probabilities as 

8 p-cIgqj = 
najYab.eZ[~(aZ’, hn’) - &Z 3 bm)b&?Z) &oll)ab 

+ %jVab.in P 6 , s 1 ( ’ b ‘> - ~6% 2 &A p(kiJ P(coll)ab > (2.8) 

where Vab.eZ and vab,in correspond to Eqs. (2.6) and (2.7), respectively, giving 
Vab,eZ = VTOT,ab(Zab - l)/zab and vab.in = VTOT.abl&b . Here VTOT,ab is the tad 

collision frequency for cell j. 
Note that sink and source terms in Eqs. (2.5) and (2.8) can be written in the 

same fOmj 

h&zVTOT.abP@, b> p(k) P(co%b , (2.9) 

where h&, equals (&b - 1)/z& Or l/z&, for elastic or inelastic collision, respectively. 
The definition off implies p(ul , b,) = falfbm , and comparing Eqs. (2.9) and (2.5), 

P@) P(coll)ab - gabhoT.&, gab), (2.10) 
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which with Eqs. (2.6) and (2.7) applies to both elastic and inelastic collisions, hence 

PWl),b - I &dTOT.a& &b> & (2.11) 
k 

Once a collision model has been chosen, the probabilities in Eq. (2.10) can be 
specified. 

While other details of Monte Carlo schemes may be found elsewhere [lo, 11, 121 
the time variable needs elaboration. To ensure that the correct collision frequency 
for elastic or inelastic collisions between pairs a, , b, is maintained, a time-counter 
for each type of collision in each cell controls the number of collisions computed. 
Since Eq. (2.9) gives the collision frequency for collisions of class (ai , b, , k) 
we find the total number of collisions per unit time in cell j for class (ai , b,) by 
integrating over Vj and k, 

(2.12) 

To obtain a time-counter for each type of collision rather than employ one for 
each class, Eq. (2.12) is normalized with falfbm . Recalling that a b, , a, collision 
is identical to an uz , b, collision, the appropriate time increment 6t for one collision 
(Anco~~,ab = 1) becomes 

(2.13) 

where & is the Kronecker delta. 
The calculation of collisions in a given cell proceeds by selecting type of collision 

according to whichever of the C(l + C) time-counters shows the smaller value. 
The appropriate time-counter is then incremented until all counters have been 
augmented by at least the nominal value At. In the case of continuous internal 
energy the summation in Eq. (2.5) is replaced by an integral and the collisional 
cross section becomes a differential cross section with respect to internal energy 
Taking these collision parameters to be included in the general symbol k, the 
foregoing expressions are unchanged. 

For the purpose of illustration, consider a single-component gas obeying the 
central force inverse power law. In terms of the usual notation, see, for example, 
Chapman and Cowling [ 181, the collision parameters are E and Y, = b(mg2/2K)1/(1-y). 
Writing 

zTOT@, d cfk = b db de, 

Eq. (2.10) becomes 

p(k)p(coll) = P(c,)P(~)P(co~~) - (~~o/h,lfax) g(y-5)'(y-1), (2.14) 

5ShS/4-5 
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implying the probabilities 

p(coll) = g(v-5)‘(v-1)/[g(v-5)‘(v-1)]m~~ ; p(c) = 1/2~; p&J = 2v&&ax . (2.15) 

Substituting Eq. (2.14) into Eq. (2.13) we obtain for the time increment 

stj = 2{ V&,(,fc/m)“““-1’ g(~-5)‘(~-1)[uo]~Bx}-l. (2.16) 

3. STATISTICAL COLLISION MODEL WITH UNRESTRICTED ENERGY EXCHANGE 

Below we develop a simple statistical model for individual elastic and inelastic 
binary collisions between molecules having continuous internal energy. The 
model is particularly suitable to particle simulation methods. 

Recall first the characteristics of the BGKW-approximation [4, 51 and its 
extensions to polyatomic gases [ 1, 21 and mixtures [6, 71. These models approximate 
the collision integral with a relaxation of ensemble averages toward equilibrium 
based on one or more relaxation times. While sink terms are proportional to 
instantaneous distribution functions, source terms are proportional to local 
equilibrium distributions that are isotropic with respect to the ensemble mass 
center. 

Adopting the foregoing characteristics for individual binary collisions implies 
that postcollision parameters are isotropic with respect to pair mass center and are 
determined by local equilibrium distributions for, respectively, translational and 
internal energies corresponding to pair energy in the center of mass system. 
Momentum and energy are explicitly conserved in the collision and pre- and 
postcollision parameters are otherwise uncorrelated. 

For an inelastic collision between molecules 1 and 2 of masses m, and m2, 
internal energies ei, and ei2 , relative velocity g and center of mass velocity G, 
the conservation of momentum and energy is 

G’ = G = km + m2u2)/(ml + m2>; e = et’ + ei’ = et + ei , (3.1) 

where e, = j$g2 and ei = ei, + ei2 denote pair energies and p the reduced mass 
m,m,/(m, + m2). Assuming now that postcollision parameters are distributed 
according to equilibrium and internal energies are independent of translational 
energy, the source term, expressed by probabilities, becomes 

p(l’, 2’ I e, toll) = P(et’, e& , ei2 ] e, ~011) 

= ~~~,,ll(e,‘)fiO(ell)fiO(e - et’ - 43, (3.2) 

where fi,cou(etl) denotes the equilibrium distribution of relative kinetic energy of 
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collision pairs and fio(e,‘J the equilibrium distribution of continuous internal 
energy for a polyatomic gas with x degrees of freedom, 

ftqcod~~) = PERU 2(~t’/7W2 exp(-G’h (3.3) 

J;‘(&) = [(x/2)/Q/2 + l)] Zlz’2-1 exp(-Z&). (3.4) 

Here, &’ = ei/kT, & = e;,lkT and T denotes the equilibrium temperature 
defined by e of Eq. (3.1). For an explicit deduction of Eq. (3.3) see, for example, 
Chapman and Cowling [18] (the case pcO&‘) N g) and of Eq. (3.4) Vincenti and 
Kruger [I91 or Phillips et al. [8]. In Eq. (3.3) the probabilityp(coll),, of Eq. (2.11) 
has been transformed to p,,&‘) for later convenience and it may be noted that 
Eq. (3.2) incorporates the conservation of pair energy. 

For a practical approach suitable to Monte Carlo calculations Eq. (3.2) is not 
in a convenient form since it involves two independent variables et’ and e;, . 
Rather, adding the internal energies & and gi2 = t? - &’ - ci1 to form &’ = 
t?il + t?i2 = d - &’ by integrating Eq. (3.2) over Zil from zero to el = e - e, 
gives the desired probability distribution for dividing pair energy into translational 
and internal energy, 

where 

fA(&‘) = [x/l$ + l)] e7-l exp(-&‘). (3.6) 

Once t$’ is selected from Eq. (3.5), and thereby cii’ = e” - &‘, gi’ is divided into 
Zi1 and k?i2 = &’ - & according to Eq. (3.2) integrated over &‘. This gives the 
product offiO(g,) andfi”(gi2 = &’ - &J, which is normalized to 

r(x) 1 P(Gl I 62 = 4’ - 61) = r(x,2)2 &i’ ~- [+- (1 - $)j+l. (3.7) 

Given postcollisional energies according to Eq. (3.5) and Eq. (3.7), the relative 
velocity after collision is determined from t$’ and the isotropy condition. Intro- 
ducing a random unit vector n’ of rectangular distribution over the 47r solid angle 
we have 

g’ = 1 g’ 1 n’; I g’ I2 = 2e,‘lp, (3.8) 

and velocities ul’ and u2’ are 

4’ = G - (p/m) g’; ~21 = G + (/-4m2> g’. (3.9 

Clearly, for an elastic collision, eh = e, , ei2 = ei2, and e,’ = e, , only Eqs. (3.8) 
and (3.9) are applied. 
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In the particular case of a rigid rotor x = 2, employing furthermore the central 
force inverse power law, the pair energy t? in an inelastic collision is divided 
according to Eq. (3.5) as 

p(&’ 1 &i = g - &‘) = ('I + '9 + 2, (!$(l -!c), (3.10) 

where q = (V - 3)/(v - l), and from Eq. (3.7) the internal energy of each 
molecule becomes rectangularly distributed, 

p(;il 1 t?& = tTii’ - i?&) = l/t$‘. (3.11) 

For a summary of the computational steps of a collision, see Appendix A. 

4. ISOTROPIC RELAXATION 

To study the rate of energy exchange between translational and internal modes 
the statistical model is applied to the case of isotropic relaxation of a single- 
component gas from a constant-speed and constant-internal energy state of 
different characteristic temperatures. The specific case x = 2, 9 = 1, for which 
Eqs. (3.10) and (3.11) apply, is chosen for comparison with the calculations of 
Melville [13] based on the loaded-sphere model having an equivalent inelastic 
collision number of 5. 

The simulation starts by setting up an ensemble of particles with the same speed 
and same internal energy according to the initial temperatures Tt/To = 7/6 and 

FIG. 1. Isotropic adiabatic relaxation of constant-speed constant-internal energy gas, initially 
at TJT. = 716 and TJT, = 314. -, Jean’s theory [20]; x, loaded-sphere model by Melville 
[13]; a, hard-sphere statistical model x = 2, 7 = 1, 2 = 4.3; 0, hard-sphere statistical model 
with restricted energy exchange, x = 2, 7 = 1, v  = 0.3. 
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T,/T,, = 3/4, where T,, is the reference temperature. At zero time the calculation 
of collision begins by solving Eq. (2.2). Periodically in time, moments of the 
ensemble are calculated, until the ensemble approaches the equilibrium state 
with Tt/To = Ti/To = 1 and the proper distributions for velocity and rotational 
energy. 

Figure 1 shows the energy relaxation calculated from 10 statistically independent 
simulations with 500-particle ensembles compared to the results of Melville [13] 
and the theory of Jeans [20]. As shown, the statistical model can reproduce the 
loaded-sphere temperature moments to within a few percentage points for 2 = 4.3. 
Although this value is close to that employed by Melville the two collision numbers 
cannot be directly compared owing to differences in their definitions. 

5. SPHERICAL SOURCE FLOW 

To study the statistical collision model for a spatially nonuniform problem we 
consider the one-dimensional case of spherical source flow which was treated by 
Bird [12] for the cases of hard-sphere, Maxwell, and rough-sphere molecules, 
respectively. 

The steady flow between two fixed radii, RJR, = 1.3 and R,IR, = 6, where R, 
denotes the throat radius, is simulated by 2,000 particles, placed in 90 cells of 
equal radial width. The reference Knudsen number is Kn = ho/R, = 0.002, 
where X, denotes the mean free path in the stagnation state. 

The flow is started as isentropic equilibrium flow with appropriate radial 
distributions of density, velocity, and temperature. Because of the low Mach- 
number at the upstream boundary the particle flux supplied there is that of 
isentropic flow. The probability density (normalized to its maximum value) of the 
radial velocity component, C, = ~,/(2kT~/rn)~/~, is 

where 6, = v,/(2kTb/m)1/2 is the macroscopic radial velocity and Tb the temperature 
at the boundary. The probability distribution of the normal velocity component, 
zi, = u,/(2kTb/m)l12 is proportional to I, exp(-zZn2), which may be inverted to 
u”, = (--In %?)li2. Because of the high Mach-number at the downstream boundary, 
on the other hand, no particle flux need be supplied there. 

Once’ steady state is established the flow is sampled for temperature moments 
of axial T,/To = 2((CZ2) - (zQ2), normal T,/T, = (zi2) - (zZZ2), translational 
Tt/To = $((zi”) - (zQ2), internal Ti/To = (2/x)(gi) and total temperature 
T/T, = [3(Tt/To) + x(Ti/To)]/(3 + x), where ti = u/(2kT,,/m)l” and Zi = eJkT,, . 
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The sample size is about 5,000 particles at each cell location, attained by sampling 
an appropriate number of times while computation proceeds at steady state. The 
time between samples is such that samples are statistically independent. 

Figure 2 shows sample calculations for the simulation of spherical source flow 
employing the statistical collision model. The internal energy represents rotation 
with three degrees of freedom (x = 3) and collision dynamics is that of hard-sphere 
particles (7 = 1). The results for three values on inelastic collision number Z are 
shown in the figure. Also shown, as smooth curves for case Z = 1.2, are the 
simulation data of Bird [12] for rough-sphere particles. It appears that the present 
statistical model can reproduce the rough-sphere temperature moments of source 
flow to within a few percentage points when Z = 1.2. This result confirms the 
well-known fact that the rough-sphere model exaggerates the coupling between 
translation and rotation to an extent evidenced by few gases. Similar calculations 
employing pseudo-Maxwell collision dynamics (7) = &), as shown in Fig. 3, predict 
less departure from equilibrium than the hard-sphere dynamics for the same value 
of Z due to the collision frequency’s independence of temperature. 

.,_ 

J 
,I? 

1 2 3 4 5 6 
R/R. 

FIG. 2. Steady spherical source flow of rotationally relaxing gas. Hard-sphere statistical 
model. 7 = 1, x = 3, and Kn = 0.002. 
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FIG. 3. Steady spherical source flow of rotationally relaxing gas. Pseudo-Maxwell statistical 
model. r) = i, x = 3, and Kn = 0.002. 

6. DISCUSSION 

By deriving the simulation technique of Bird from the semiquantum mechanical 
formulation of the collision integral the method has been extended to gas mixtures 
and to include internal energy. The derivation shows how arbitrary collision 
models may be applied and how time counters should be kept. 

The proposed statistical model constitutes an alternative phenomenological 
model to the classical models that include internal energy. From its formulation 
it is clear that the source term satisfies the principle of detailed balance at 
equilibrium. Also, the Boltzmann H-theorem is satisfied, a fact that has been 
demonstrated by simulations for isotropic relaxation. The model has been described 
in terms of a single class of inelastic exchanges, a collision probability depending 
only on relative velocity raised to some power and postcollision isotropy in the 
center of mass system. However, the model may readily be generalized to include 
several classes of exchange and less restrictive probability distributions. 
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One modification, leading to a statistical collision model with restricted energy 
exchange, has already been reported [21]. Applied to a one-component gas having 
continuous internal energy this model treats all collisions as being inelastic with 
the restriction that a given constant fraction q~ (0 < y < 1) of pair internal and 
translational energies is made available for statistical exchange during a collision. 
The parameter q~ may be viewed as a pseudosteric factor and the condition of 
retention of precollision energy is interpreted as a reduction in the number of active 
pair energy modes. Supposing, furthermore, that energy modes are independent 
and conform to Boltzmann statistics, the model is obtained from the present 
one for Z = 1 by replacing e with de, x with TX, and 7 with ~(1 + 7) - 1. 
Postcollisional pair energies are computed from 

et’ = (1 - y) e, + de,‘; ei’ = (1 - y) ei + dei’, 

while postcollision velocities and internal energies are in turn computed as before. 

1 2 3 4 5 
R/R. 

FIG. 4. Steady spherical source flow of rotationally relaxing gas. Hard-sphere statistical 
model with limited energy exchange. r) = 1, x = 3, and Kn = 0.002. 
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Calculations with this model for 9) = 0.3 in the case of isotropic relaxation is 
shown in Fig. 1, and for the spherical source flow with v = 0.2 and q = 0.4, 
in Fig. 4. These and other simulations with varying 2 and v show that the relation 
between 2 and q~ of the two models is not significantly affected by the type of 
problem. At equilibrium both models give the correct Boltzmann distributions 
for velocities and internal energy with a tendency toward more scatter for the 
model with restricted energy exchange. 

TABLE I 

Typical CPU-Times (IBM 3701165) in Seconds 
for Spherical Source Flow 

Per 1,000 collisions Total job time 

Monatomic gas models: 

Hard-sphere 
Maxwell 

1.7 150 
1.0 130 

Diatomic gas models: 

Hard-sphere statistical 
(ZR = 1.2) 

Pseudo-Maxwell statistical 
(ZR = 1.2) 

Hard-sphere statistical 
with restricted energy 
exchange (9’ = 1.042) 

1.8 200 

1.1 180 

1.8-3 200-350 

The proposed statistical model for inelastic collisions is found generally to be 
economical for computer simulation. Table I shows typical CPU-times 
(IBM 370/165) for 1,000 collisions and total job times for various cases of the 
spherical source flow described in Section 5, including some monatomic cases for 
reference. The times include evaluation of moments, statistics on these, and the 
necessary bookkeeping, but, nevertheless, they do not exceed 10 x-20 % of the 
smallest times indicated. Total Fortran program size is 128 k bytes for spherical 
source flow compared to 58 k for isotropic relaxation. It is found that CPU-times 
depend to a large extent on the values of parameters entering the probability 
distributions sampled by the implicit method (see Appendix A, Eqs. (A2), (A5), 
and (A7)). Distributions thus become unbounded for 9) < 0.5 and x = 2 in the 
model with restricted energy exchange leading to a two- to threefold increase in 
time per collision depending on the accuracy requested. On the other hand, the 
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model with unrestricted energy exchange, employing an inelastic collision number, 
is seen to require little more CPU-time per collision than the hard-sphere collision 
model for monatomic gas and is therefore generally recommended. 

APPENDIX A 

To clarify the application of the collision model the computational steps for 
one collision are summarized. 

Collision type is selected by min(t,,,) in cell j, say, an inelastic a, b collision, 
Having random numbers &?I , BS ,..., rectangular distributed in [O; 11, and the 
molecules ordered in numbers from one to IV,? and Nbj , respectively, two particles 
are selected by 

N(a) = W,Naj + 1; N(b) = B2Nbj + 1. (Al) 

From the stored velocities u, and ub , the relative velocity g,, = ub - u, is 
calculated and the criterion ~(~011) of Eq. (2.11) is applied, say, in terms of 
Eq. (2.15), for the purpose of illustration. Given a predetermined cutoff value 
[ g(Y-5)/(V-1&,X collision between a and b occurs provided 

g~~5)/(Y-l)/[g(v-5)l(v-l)lmax > g, . 
642) 

Otherwise a new pair a, b is selected by Eq. (Al). Given collision and the pair 
energy e by Eq. (3.1), t$’ is determined according to Eq. (3.5) with the use of 
Eq. (2.15) in Eq. (3.3) for this case. Explicit selection by inversion of 

I 
Et’ 

p(x 1 Zii’ = e’ - x) dx = 92:4 
0 

(A3) 

is usually not possible and we employ instead the implicit method. Normalizing 
Eq. (3.5) with respect to its maximum value gives 

p(&’ 1 Zd’ = F - &‘) 
BetT = [p(f?i 1 &’ = d - fTt’)lmsx 

= x+9-1 n x+v-1 x--l &‘” 
( rl )( x- 1 ) (T) (1 -SY 

and sets of two random numbers are drawn till the inequality 

644) 
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is satisfied. Now having &’ = W,d and gdi’ = (1 - S?&, we divide &’ according to 
Eq. (3.7), which, normalized to unit maximum value, is 

g3& = p-2 [z$ (1 - 2L)]x’2-‘, 

and ;;I and gi2 = (1 - 9,) &’ are accepted, provided 

Se;& = w,t?;} 3 9,. 647) 

Finally, the postcollision velocities are computed from Eqs. (3.8) and (3.9), with 

where 

n’ = (cos e, sin e cos E, sin 19 sin E), 

cos e = i - 2.53, ; E = 27TL%&. 

The appropriate time-counter is then incremented with 

St = ’ + ‘ab 2 b 5)/b-1) -1 
h [Vjnainbi7Tu., g  - 1 3 

ab 

where ~a,,~ is the molecular cross section. Note that the special case v --f co 
(7 = 1) coincides with the hard-sphere model and v = 5 (7 = &) with the 
pseudo-Maxwell model. 

Whenever symmetry conditions exist the number of stored coordinates for u 
and x may be reduced. Random directions are accordingly assigned for u whenever 
needed to evaluate precollision parameters. 
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